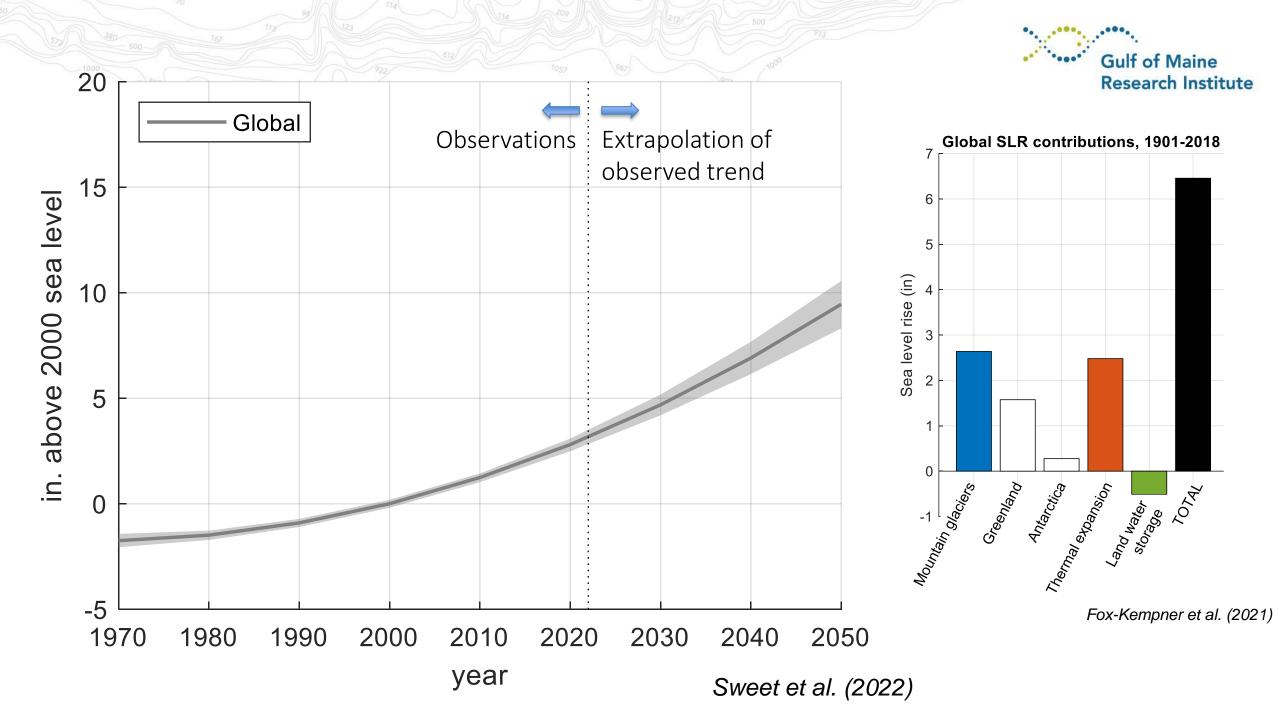
Demystifying sea level rise and coastal flooding projections

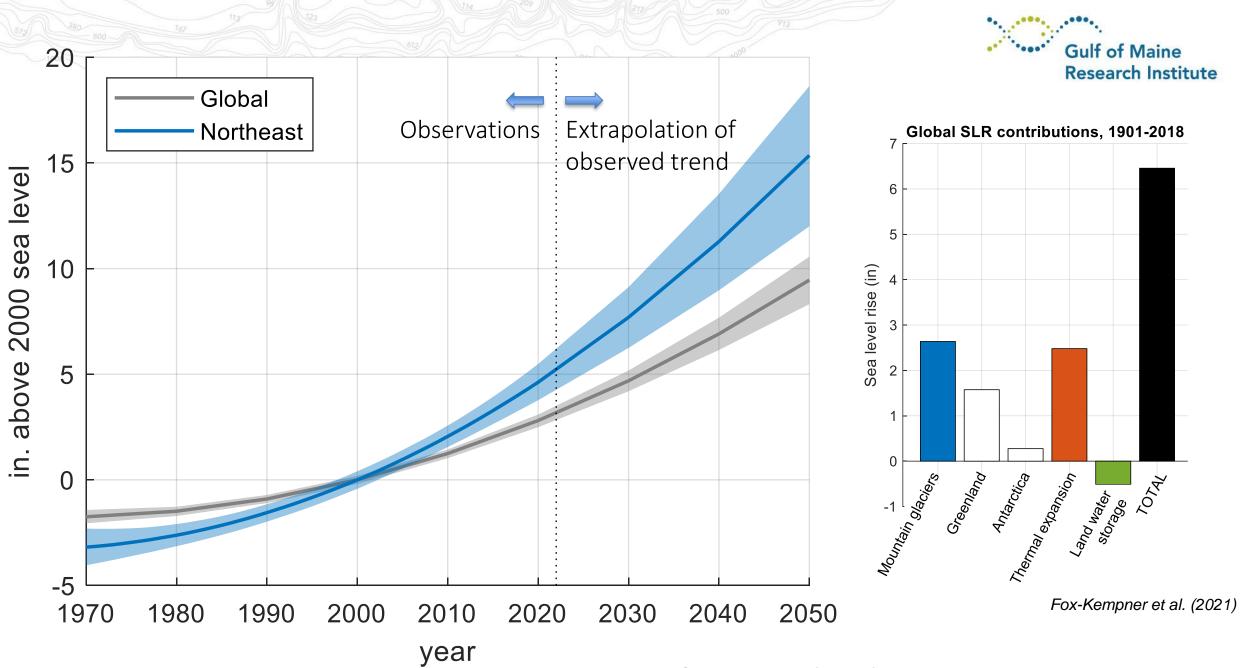
Hannah Baranes, Ph.D. Postdoctoral researcher, GMRI Climate Center April 26, 2022

Gulf of Maine Research Institute

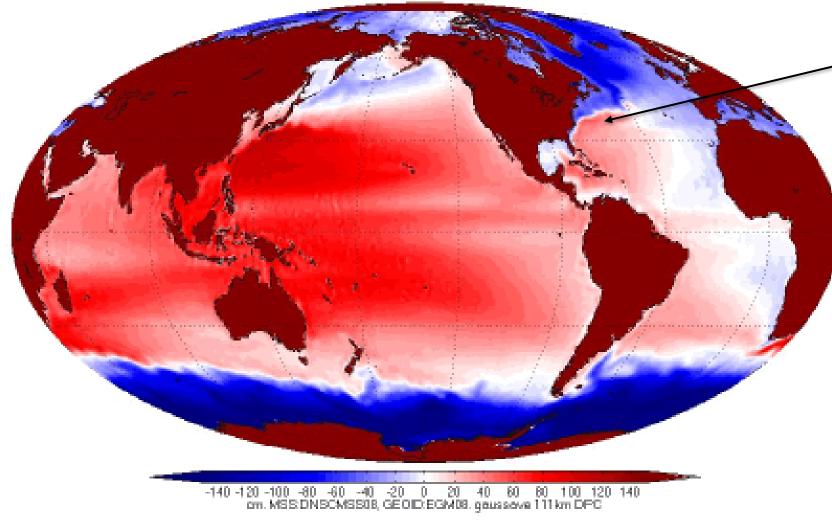
Science. Education. Community.

You are tasked with considering coastal flooding in project design or decision-making.


My goal: provide foundational knowledge for interpreting and choosing among available resources.


- Fundamental sea level science
- IPCC and U.S. Interagency Taskforce sea level rise projections
- Physical drivers of flooding
- High tide flooding projections overview
- Tide gauge and dynamic modeling-based extreme flood hazard evaluation

Sea level fundamentals



Sweet et al. (2022)

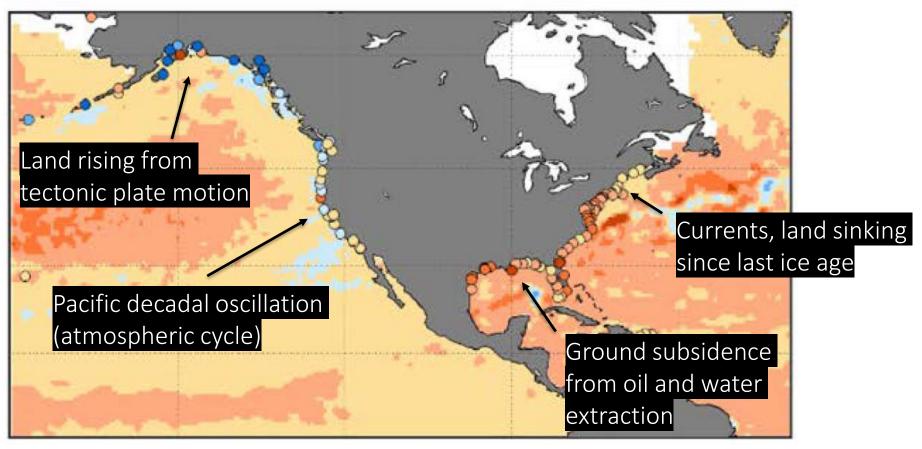
Currents and tides cause the ocean surface height to vary by several feet

OCEAN DYNAMIC TOPOGRAPHY, 1993-2008

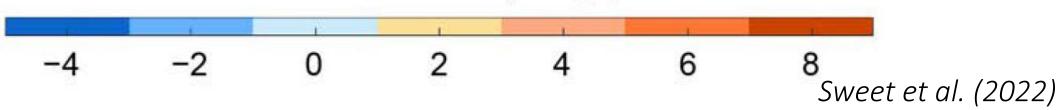
Gulf of Maine Research Institute

As the Gulf Stream turns eastward, it pulls water away from the Atlantic Coast

Impact of warming:

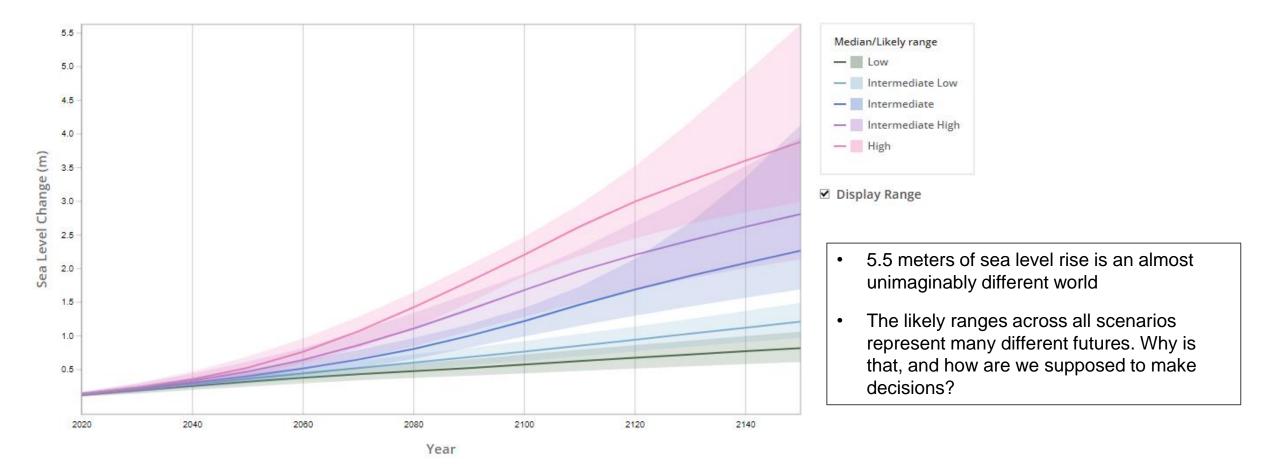

- → Ice sheets dump freshwater into polar oceans
- \rightarrow Gulf stream slows down

→ Less water pulled from coast, and sea level increases along the Atlantic seaboard


NASA JPL

Sea level rise rate, 1993-2020

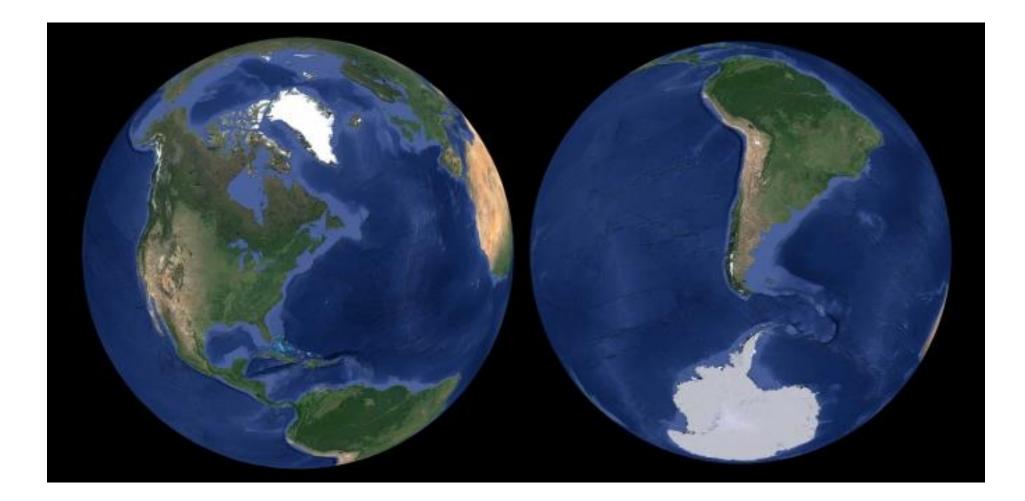
Sea-Level Trend (mm/yr)

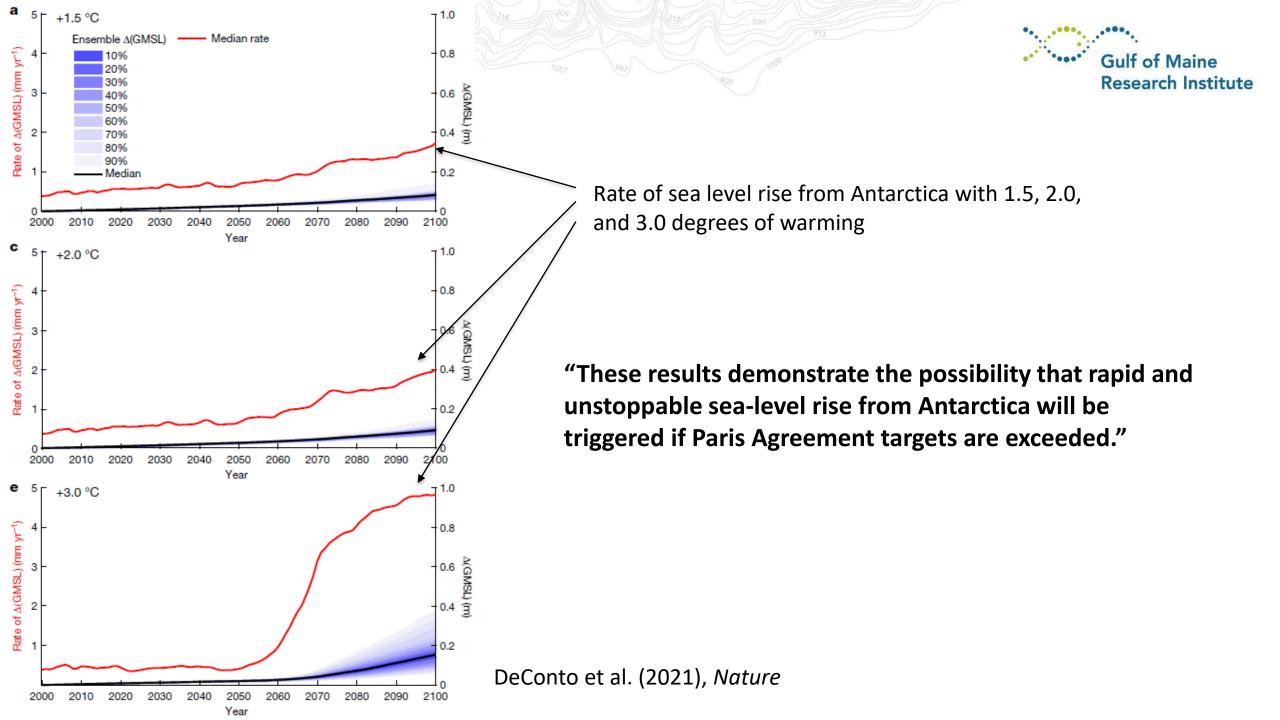


Sea level rise projections

A general point (don't worry about reading the axes)

Gulf of Maine Research Institute


2022 US Interagency Task Force tech report: Northeast U.S. sea level rise projections



https://sealevel.nasa.gov/task-force-scenario-tool

Greenland: 1.6 inches so far, 23 ft potential Antarctica: 0.2 inches so far; 187 ft potential

Localized, probabilistic projections

Kopp et al. (2014):

- Global mean sea level change → local sea level change
- Likely sea level change → all probabilities, including tail risk

R. DeConto, H. Baranes, J. Woodruff, A. Halberstadt, R. Kopp. (in press)

AGU PUBLICATIONS

Earth's Future

RESEARCH ARTICLEProbabilistic 21st and 22nd century sea-level projections10.1002/2014EF000239at a global network of tide-gauge sites

Robert E. Kopp¹, Radley M. Horton², Christopher M. Little³, Jerry X. Mitrovica⁴, Michael Oppenheimer³, D. J. Rasmussen⁵, Benjamin H. Strauss⁶, and Claudia Tebaldi^{6,7}

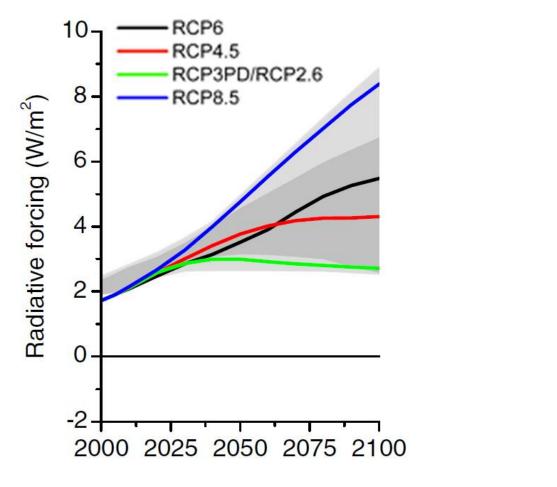
				L	ikely rang			
		0.99	0.95	0.83	0.5	0.17	0.05	0.01
	2020	1	5	8	13	17	21	25
S.	2030	4	9	14	20	27	33	40
ω Ο	2050	12	19	27	39	52	65	83
СЪ	2070	19	31	44	63	85	109	145
К	2100	28	49	72	105	146	192	273
_	2200	118	148	184	257	378	550	904
	2020	3	6	8	12	15	18	21
4.5	2030	6	10	14	19	24	28	33
	2050	9	16	23	34	44	54	66
RCP	2070	13	23	34	50	68	84	105
К	2100	16	31	48	73	100	129	173
_	2200	23	54	89	147	230	335	543
	2020	3	6	9	13	16	19	22
9	2030	4	8	13	19	25	30	35
N N	2050	4	12	20	32	43	53	64
СР	2070	6	16	27	43	59	73	90
К	2100	6	20	35	56	78	101	133
	2200	41	54	69	97	143	208	341

Parks, trails, etc.

IPCC and U.S. Interagency Task Force

- *Fifth Assessment Report* (AR5), Church et al. (2013)
- Special Report on Oceans and Cryosphere in a Changing Climate (SROCC), Oppenheimer et al. (2019)
- Sixth Assessment Report (AR6), Fox-Kempner et al. (2021)

U.S. Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force


- Sweet et al. (2017) → Fourth National Climate Assessment (NCA4)
- Sweet et al. (2022) → pending Fifth National Climate Assessment (NCA5)

Sometimes called "NOAA projections"

IPCC projections: RCPs and SSPs

Representative Concentration Pathways

Shared Socioeconomic Pathways

mitigation

for

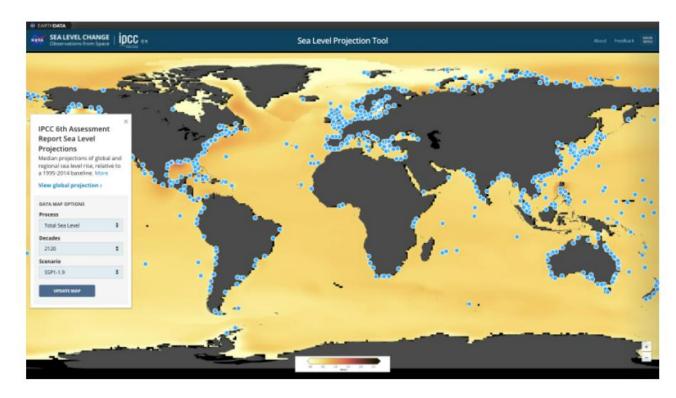
challenges

Socio-economic

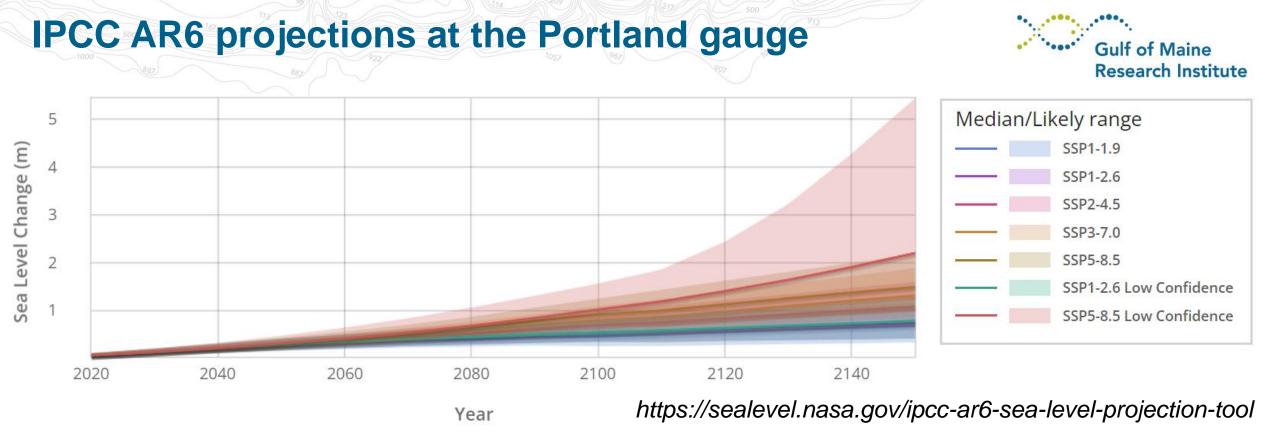
★ SSP 5: **★** SSP 3: (Mit. Challenges Dominate) (High Challenges) Fossil-fueled **Regional Rivalry** A Rocky Road Development Taking the Highway **★** SSP 2: (Intermediate Challenges) Middle of the Road ***** SSP 1: **★** SSP 4: (Low Challenges) (Adapt. Challenges Dominate) Sustainability Inequality Taking the Green Road A Road Divided

Socio-economic challenges for adaptation

O'Neill et al., 2016


van Vuuren et al., 2011

IPCC AR6 projections at the Portland gauge


SEA LEVEL CHANGE Observations from Space

IPCC AR6 Sea Level Projection Tool

https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool

SSP1-1.9: Low emissions; 1.5°C warming by 2100 **SSP1-2.6:** Low emissions; 2.0° warming by 2100

SSP2-4.5: No additional climate policy (in line with current Nationally Determined Contributions); 2.7°C warming

SSP3-7.0: High non-CO₂ emissions **SSP5-8.5:** High CO₂ emissions

SSP1-2.6 / SSP5-8.5 Low Confidence: Include deeply uncertain ice sheet processes

IPCC AR6 projections at the Portland gauge

A	utoSave 🧿	off 🗄		~ B ~ -			ip	cc_ar6_sea_l	evel_projecti	on_psmsl_id	_183.xlsx - F	Protected Vie	ew 🔻	Q	Hannah Bar	ranes HB	lä i	西 -	- 0	/×/
File	e Hom	ne Inser	t Draw	Page La	yout For	mulas	Data Re	view Vie	w Help									Comme	nts 🖻 🖻 S	Share
41		- : >	·	£																~
A1		- 2	< 🗸	<i>f</i> x psm	sl_id															¥
	А	В	С	D	E	F	G	H		J	K	L	M	N	0	Р	Q	R	S	
1	psmsl_id	process	confidenc	scenario	quantile	2020	2030	2040	2050	2060	2070	2080	2090	2100	2110	2120	2130	2140	2150	
2	183	total	medium	ssp119	5	0.015	0.055	0.076	0.093	0.116	0.148	0.154	0.161	0.126	0.114	0.123	0.126	0.129	0.131	
3	183	total	medium	ssp119	17	0.045	0.097	0.136	0.172	0.206	0.244	0.26	0.281	0.268	0.273	0.294	0.312	0.329	0.346	
4	183	total	medium	ssp119	50	0.08	0.148	0.21	0.273	0.322	0.373	0.409	0.453	0.473	0.514	0.562	0.606	0.65	0.692	
5		total	medium	ssp119	83	0.118	0.204	0.295	0.391	0.462	0.532	0.597	0.668	0.722	0.808	0.886	0.963	1.038	1.111	
6		total	medium	ssp119	95	0.15	0.252	0.366	0.487	0.577	0.664	0.751	0.847	0.929	1.032	1.136	1.239	1.338	1.438	
7		total	medium	ssp126	5	0.02	0.047	0.076	0.11	0.148	0.187	0.212	0.232	0.247	0.229	0.24	0.249	0.255	0.261	
8		total	medium	ssp126	17	0.046	0.09	0.135	0.183	0.228	0.275	0.305	0.332	0.36	0.355	0.376	0.394	0.41	0.426	
9	183	total	medium	ssp126	50	0.083	0.152	0.222	0.293	0.354	0.414	0.462	0.51	0.552	0.59	0.633	0.675	0.714	0.754	
10	183	total	medium	ssp126	83	0.122	0.219	0.318	0.417	0.499	0.582	0.652	0.727	0.795	0.88	0.955	1.029	1.103	1.175	
11	183	total	medium	ssp126	95	0.151	0.269	0.391	0.51	0.611	0.715	0.806	0.905	0.992	1.097	1.196	1.294	1.392	1.488	
12	183	total	medium	ssp245	5	0.017	0.043	0.088	0.147	0.201	0.244	0.284	0.332	0.357	0.345	0.381	0.416	0.45	0.484	
13	183	total	medium	ssp245	17	0.045	0.087	0.142	0.208	0.271	0.328	0.378	0.435	0.481	0.489	0.539	0.589	0.638	0.685	
14	183	total	medium	ssp245	50	0.084	0.148	0.223	0.304	0.382	0.464	0.536	0.61	0.7	0.764	0.848	0.93	1.01	1.09	
15	183	total	medium	ssp245	83	0.125	0.214	0.312	0.414	0.513	0.629	0.732	0.838	0.976	1.107	1.234	1.359	1.485	1.611	
16	183	total	medium	ssp245	95	0.155	0.264	0.38	0.498	0.617	0.761	0.893	1.026	1.2	1.37	1.528	1.685	1.845	2.004	
17	183	total	medium	ssp370	5	0.009	0.035	0.071	0.125	0.201	0.274	0.351	0.426	0.457	0.444	0.501	0.559	0.613	0.664	
18	183	total	medium	ssp370	17	0.04	0.081	0.13	0.194	0.272	0.355	0.438	0.523	0.585	0.591	0.666	0.739	0.81	0.878	
19	183	total	medium	ssp370	50	0.084	0.146	0.218	0.298	0.384	0.482	0.582	0.695	0.806	0.883	0.994	1.106	1.216	1.322	
20	183	total	medium	ssp370	83	0.129	0.216	0.312	0.416	0.519	0.645	0.776	0.931	1.101	1.246	1.409	1.573	1.733	1.894	
21	183	total	medium	ssp370	95	0.163	0.269	0.383	0.504	0.624	0.778	0.938	1.131	1.348	1.532	1.735	1.941	2.145	2.348	
22	183	total	medium	ssp585	5	0.024	0.051	0.107	0.165	0.221	0.293	0.373	0.457	0.526	0.505	0.573	0.638	0.695	0.75	
23	183	total	medium	ssp585	17	0.048	0.092	0.159	0.23	0.3	0.384	0.478	0.579	0.672	0.677	0.764	0.846	0.923	0.995	
24	183	total	medium	ssp585	50	0.083	0.152	0.235	0.328	0.424	0.534	0.656	0.792	0.926	1.014	1.143	1.268	1.388	1.503	
25	183	total	medium	ssp585	83	0.12	0.216	0.32	0.442	0.571	0.717	0.882	1.07	1.261	1.446	1.638	1.823	2.007	2.184	-
-	•	ReadMe	Total	Sterodynar	mic GIS	AIS	Glaciers	VerticalLar	dMotion	LandWa	terStora	+ : •								
Read	ly													🛃 Display	Settings		- 19		+	100%

Sweet et al. (2022) projections

Scenario	Global mean sea level rise in 2100	
Low	0.3 m	
Intermediate-Low	0.5 m	
Intermediate	1.0 m	
Intermediate-High	1.5 m	
High	2.0 m	

Temporal trajectories and probabilities are consistent with IPCC AR6

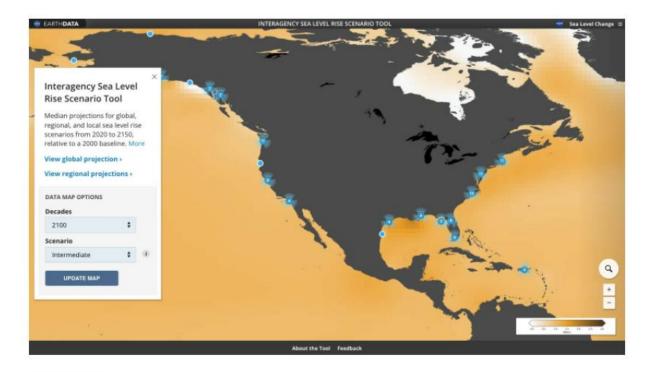
Uncertain ice sheet processes contribute significantly to SLR in the late 21st century and beyond

Note that the "Extreme" scenario from Sweet et al. (2017) and NCA4 was dropped

Sweet et al. (2022) projections

Gulf of Maine Research Institute

Global Mean Surface Air Temperature 2081–2100	1.5°C	2.0°C	3.0°C	4.0°C	5.0°C	Unknown Likelihood, High Impact – Low Emissions	Unknown Likelihood, High Impact – Very High Emissions
Closest Emissions Scenario–Based GMSL Projection	Low (SSP1-2.6)	Low (SSP1-2.6) to Intermediate (SSP2-4.5)	Intermediate (SSP2-4.5) to High (SSP3-7.0)	High (SSP3-7.0)	Very High (SSP5-8.5)	Low (SSP1-2.6), Low Confidence processes	Very High (SSP5-8.5), Low Confidence processes
Total (2050)	0.18 (0.16–0.24)	0.20 (0.17–0.26)	0.21 (0.18– 0.27)	0.22 (0.19–0.28)	0.25 (0.22–0.31)	0.20 (0.16–0.31)	0.24 (0.20–0.40)
Total (2100)	0.44 (0.34–0.59)	0.51 (0.40–0.69)	0.61 (0.50– 0.81)	0.70 (0.58– 0.92)	0.81 (0.69–1.05)	0.45 (0.32–0.79)	0.88 (0.63–1.60)
Bounding Median Scenarios in 2100	Low to Intermediate- Low	Intermediate- Low to Intermediate	Intermediate- Low to Intermediate	Intermediate- Low to Intermediate	Intermediate- Low to Intermediate	Low to Intermediate-Low	Intermediate-Low to Intermediate
Probability > Low (0.3 m) in 2100	92%	98%	>99%	>99%	>99%	89%	>99%
Probability > IntLow (0.5 m) in 2100	37%	50%	82%	97%	>99%	49%	96%
Probability > Int. (1.0 m) in 2100	<1%	2%	5%	10%	23%	7%	49%
Probability > IntHigh (1.5 m) in 2100	<1%	<1%	<1%	1%	2%	1%	20%
Probability > High (2.0 m) in 2100	<1%	<1%	<1%	<1%	< %	<1%	8%

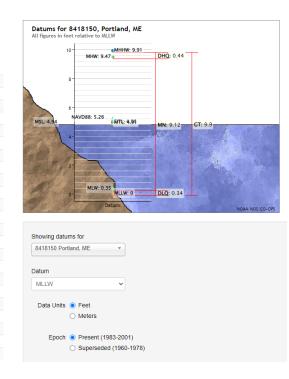

Sweet et al. (2022), Table 2.4 (also check out Figure 2.7)

Sweet et al. (2022) projections

SEA LEVEL CHANGE Observations from Space

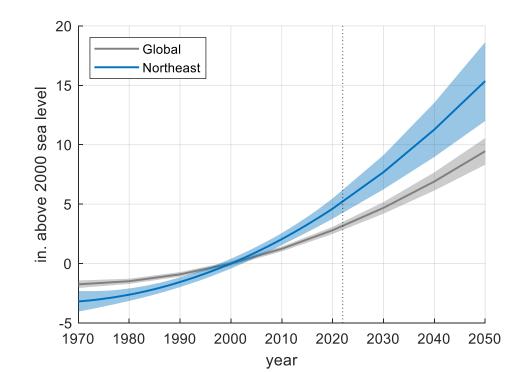
Interagency Sea Level Rise Scenario Tool

A key detail: Datums

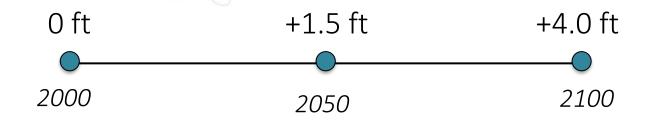


It is standard for water level datums to be calculated over 19-year periods to incorporate cyclical astronomical, oceanic, and atmospheric variability.

Local tidal datums and flood thresholds from NOAA CO-OPS / NWS:


Centered on 1992 (1983-2001), i.e. present NTDE

Station: 8418150, Portland, N Status: Accepted (Apr 17 200 Units: Feet Control Station:		T.M.: 0 Epoch: 1983-2001 Datum: MLLW					
Datum	Value	Description					
MHHW	9.91	Mean Higher-High Water					
MHW	9.47	Mean High Water					
MTL	4.91	Mean Tide Level					
MSL	4.94	Mean Sea Level					
DTL	4.96	Mean Diurnal Tide Level					
MLW	0.35	Mean Low Water					
MLLW	0.00	Mean Lower-Low Water					
NAVD88	5.26	North American Vertical Datum of 1988					
STND	-8.55	Station Datum					
GT	9.90	Great Diurnal Range					
MN	9.12	Mean Range of Tide					
DHQ	0.44	Mean Diurnal High Water Inequality					
DLQ	0.34	Mean Diurnal Low Water Inequality					
HWI	3.59	Greenwich High Water Interval (in hours)					
LWI	9.75	Greenwich Low Water Interval (in hours)					
Max Tide	14.13	Highest Observed Tide					
Max Tide Date & Time	02/07/1978 10:30	Highest Observed Tide Date & Time					
Min Tide	-3.45	Lowest Observed Tide					
Min Tide Date & Time	11/30/1955 17:18	Lowest Observed Tide Date & Time					
HAT	11.97	Highest Astronomical Tide					
HAT Date & Time	05/19/2034 04:06	HAT Date and Time					
LAT	-2.12	Lowest Astronomical Tide					
LAT Date & Time	01/14/2036 22:42	LAT Date and Time					

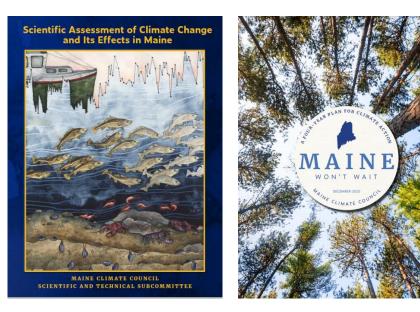

NOAA and IPCC sea level rise projections:

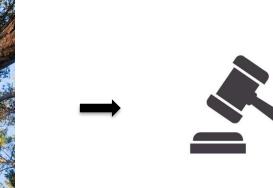
1986-2005 (SROCC) 1995-2014 (AR6) 2000 or 2005 baseline (Sweet et al., 2022)

Maine's "Commitment to manage"

Note: Equivalent 2022 NOAA projections are +1.1 ft in 2050 and +3.5 ft in 2100.

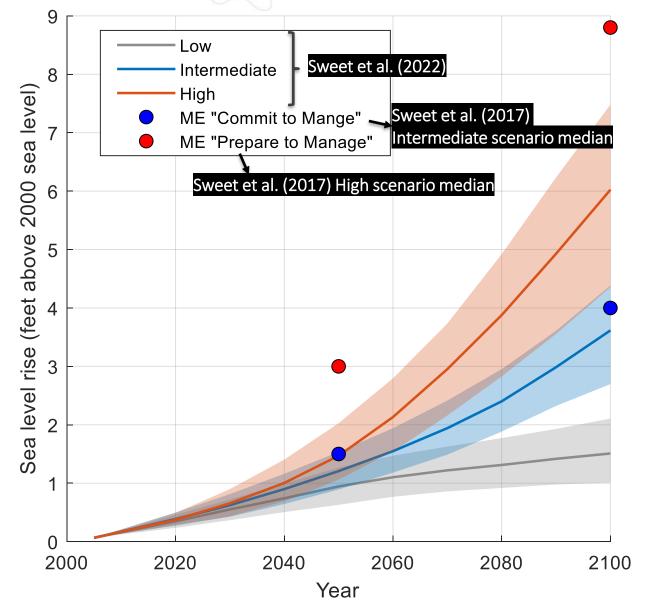
NOAA Technical Report NOS CO-OPS


GLOBAL AND REGIONAL SEA LEVEL RISE SCENARIOS FOR THE UNITED STATES



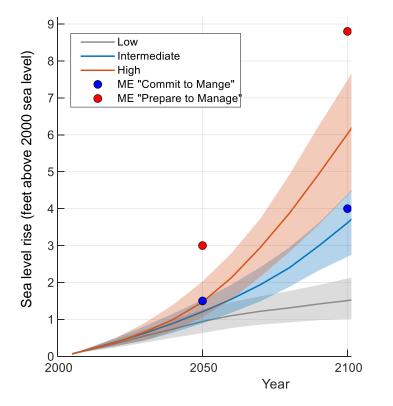
Silver Spring, Maryland January 2017

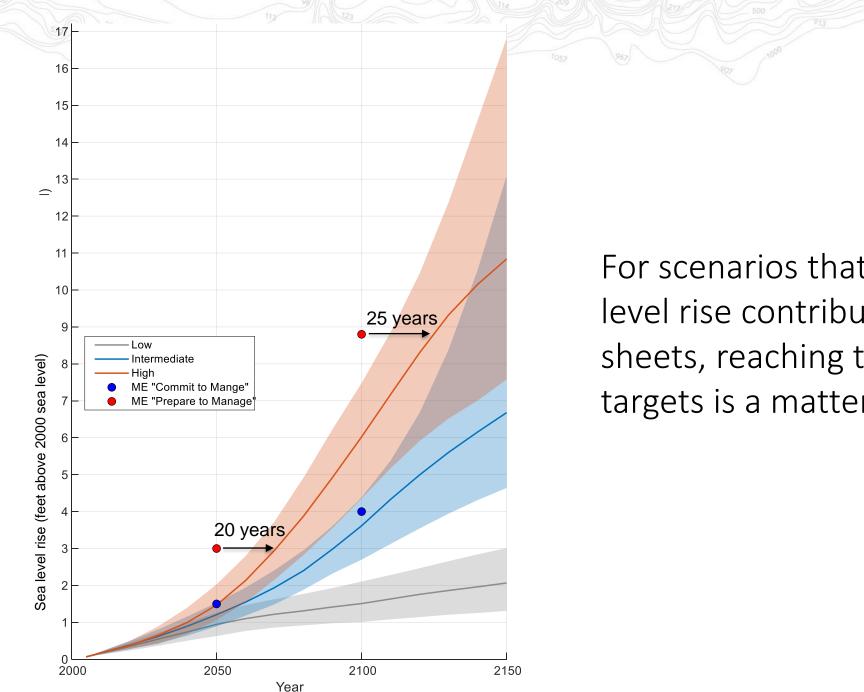
NOORA National Oceanic and Atmospheric Administration U.S. DEPARTNENT OF COMMERCE National Ocean Service Center for Operational Oceanographic Products and Services


2017 NOAA Tech report

Maine Climate Council adopts sea level planning targets based on Scientific and Technical Subcommittee (STS) report Legal mandate to incorporate "commit to manage" scenarios into state agency regulations Average SLR across Maine gauges using Sweet et al. (2022) projections

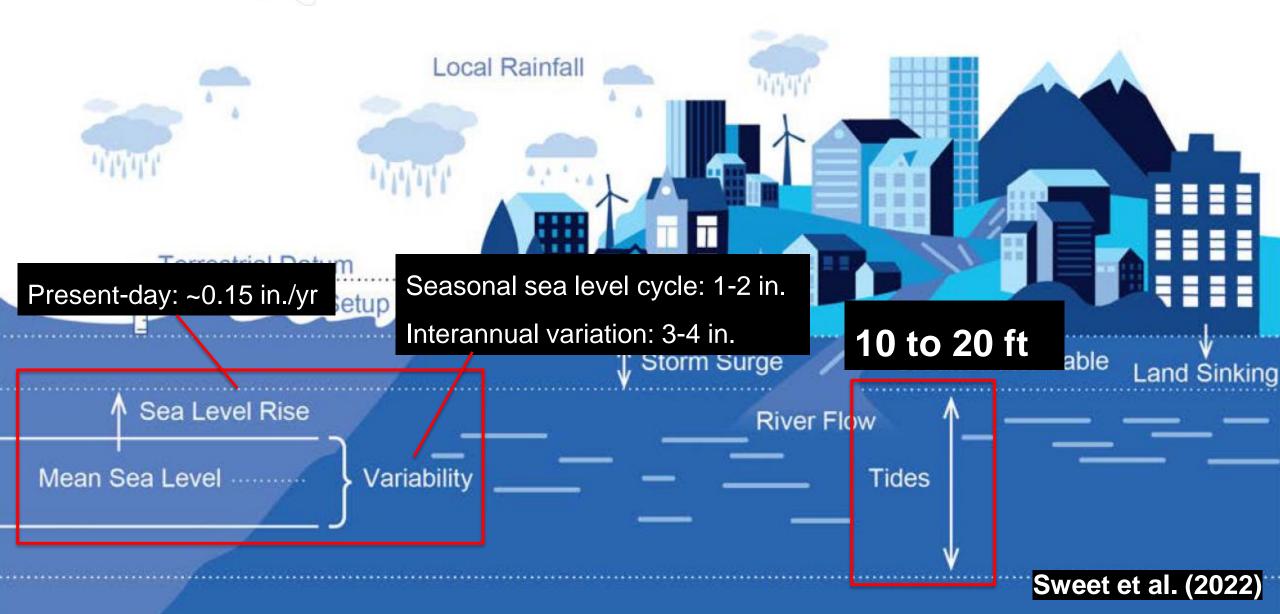
The latest sea level projections are lower than Maine's targets (based on the 2017 NOAA report).


Why?


- 1. Uncertainty around the **timing** of when ice sheets (Antarctica and Greenland) become major contributors to sea level rise.
- 2. Better estimates of the relative contributions of Greenland vs. Antarctica.

Same figure as on previous slide, but compressed...

For scenarios that assume major sea level rise contributions from ice sheets, reaching these high sea level targets is a matter of **when**, not **if**.

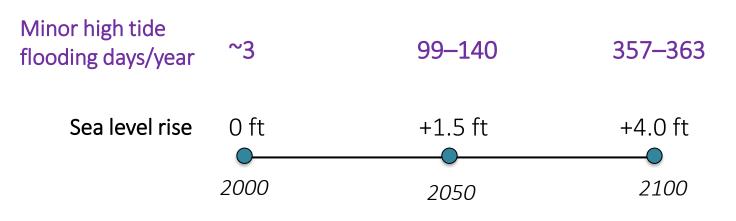

Coastal Flooding

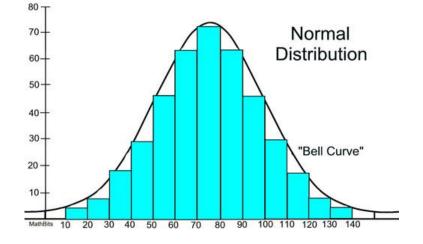
High tide "nuisance" flooding

Extreme flooding

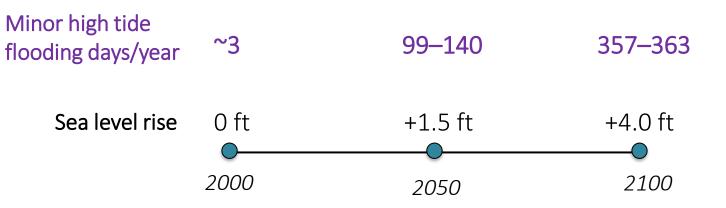
Physical drivers of flooding (high tide flooding)

Nonlinear relationship between SLR and flooding

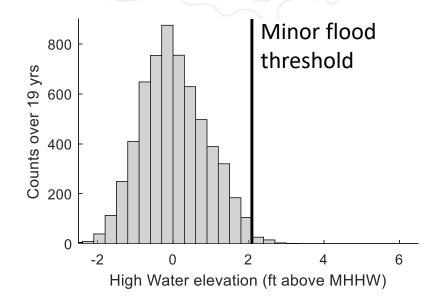

or, a little bit of SLR = a lot more flooding



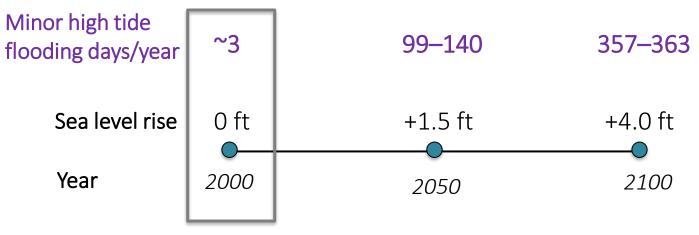
Minor flooding in Portland under Maine sea level rise scenarios

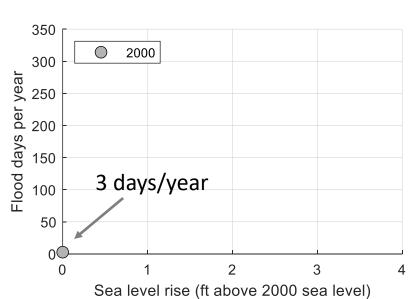


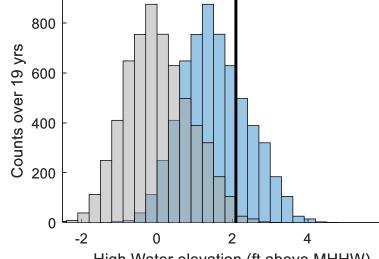
Minor flooding in Portland under Maine sea level rise scenarios

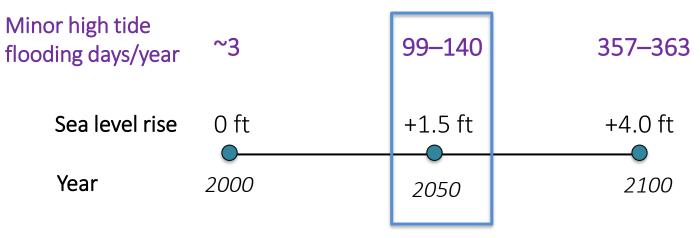


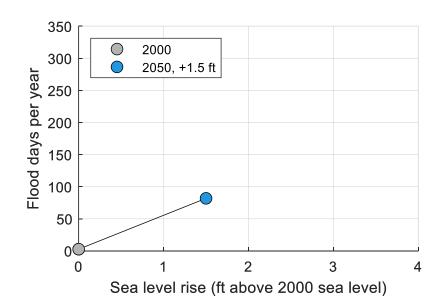
https://mathbitsnotebook.com/Algebra2/Statistics/STnormalDistribution.html



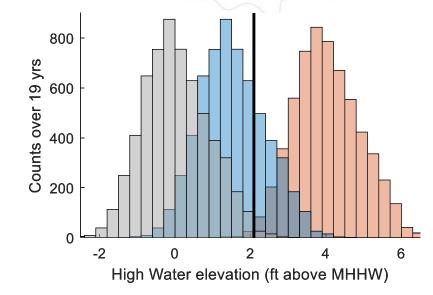

Distribution of daily highest predicted tide

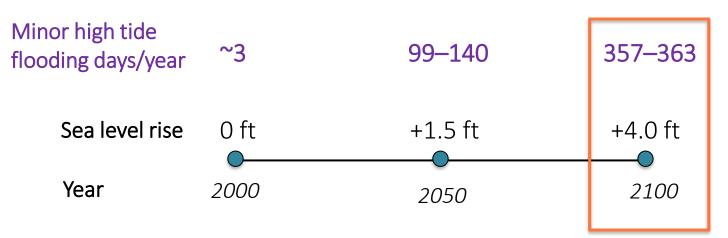

Minor flooding in Portland under Maine sea level rise scenarios


Distribution of daily highest predicted tide

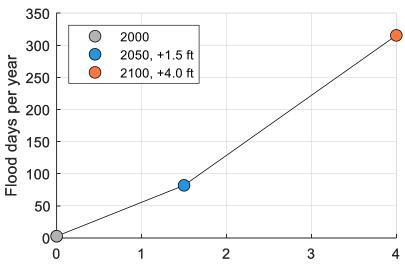


High Water elevation (ft above MHHW)

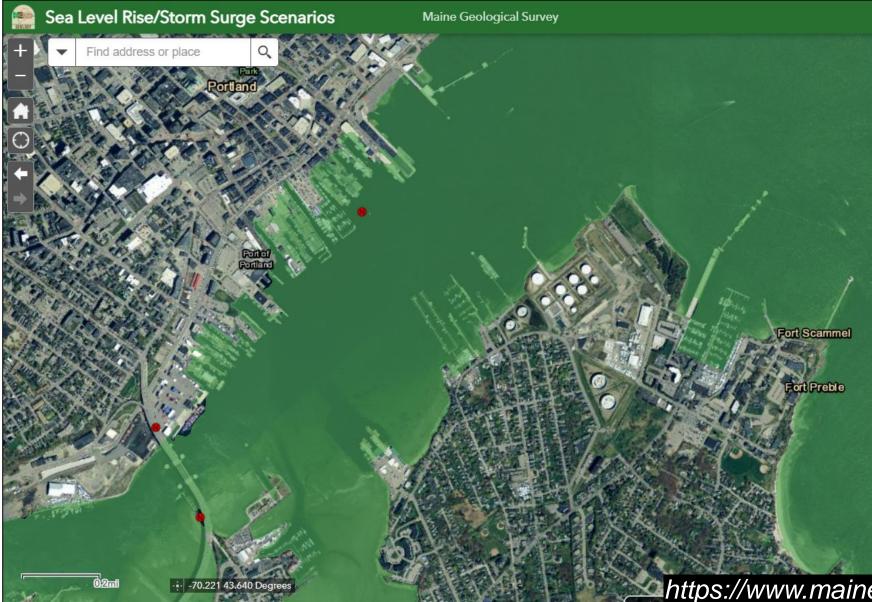




Distribution of daily highest predicted tide



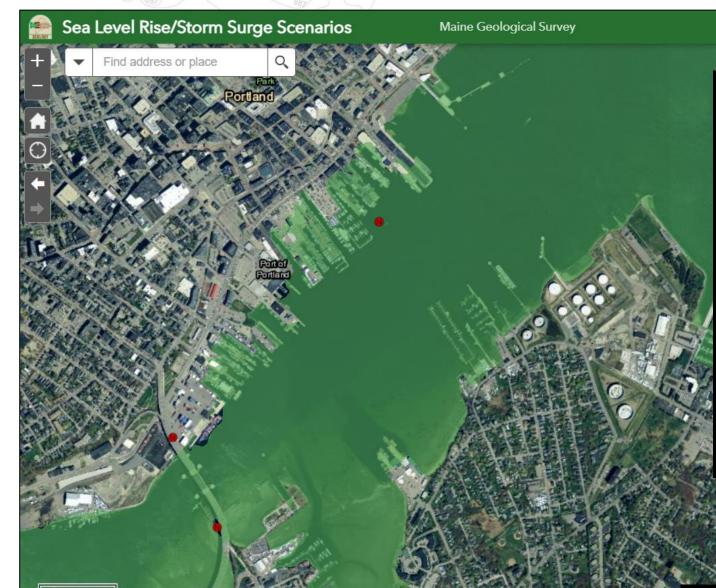
Minor flooding in Portland under Maine sea level rise scenarios


https://sealevel.nasa.gov/flooding-days-projection/

Sea level rise (ft above 2000 sea level)

High tide flooding projections: Maine Geological Survey

Gulf of Maine Research Institute


1983-2001 Highest Astronomical Tide + 1.2, 1.6, 3.9, 6.1, 8.8, and 10.9 ft of sea level rise above 2000 mean sea level

"Bathtub" mapping on top of LiDAR

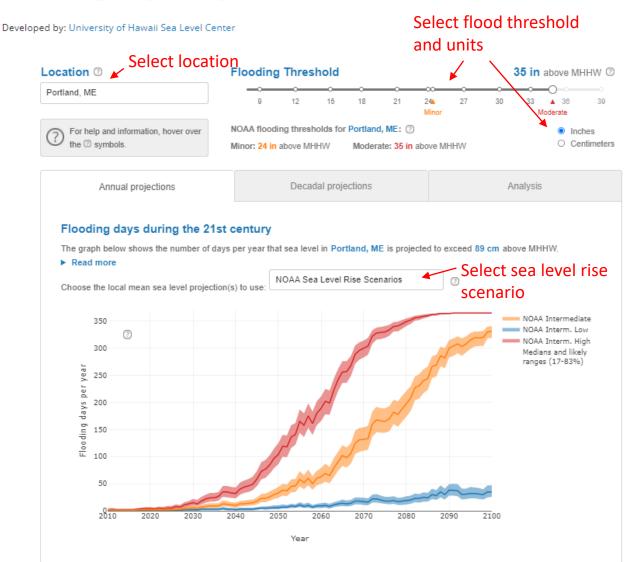
https://www.maine.gov/dacf/mgs/hazards/slr_ss

High tide flooding projections: Maine Geological Survey

Gulf of Maine Research Institute

Important notes:

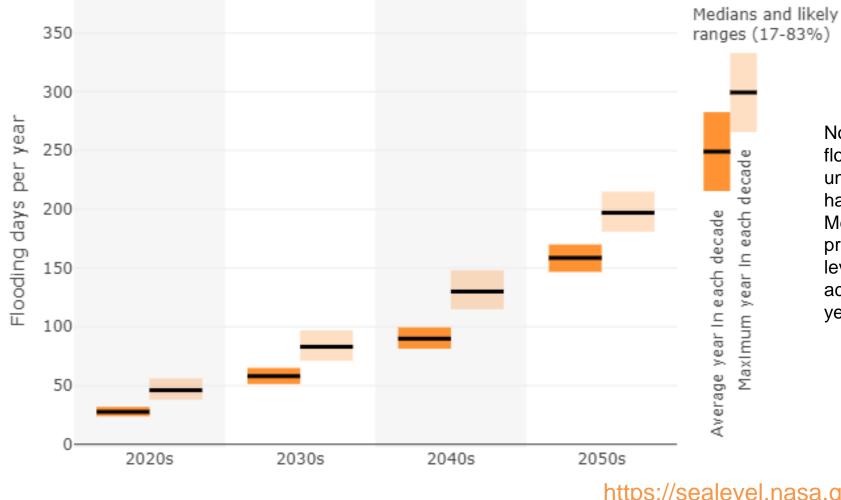
- Be mindful of datums (HAT is relative to 1992 and SLR is relative to 2000)
- HAT is less accurate farther from tide stations
- Does not include sea level variability, storms, or river processes


https://www.maine.gov/dacf/mgs/hazards/slr_ss

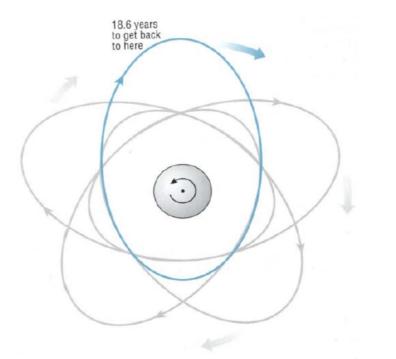
High tide flooding projections: Thompson et al. (2021)

https://sealevel.nasa.gov/floodingdays-projection/

- Includes sea level rise projections, future tide predictions, and year-toyear sea level variability (due to predictable, cyclical variations in climate)
- Available at 89 U.S. tide gauges, and projections are specific to each location.


Flooding Days Projection Tool

High tide flooding projections: Thompson et al. (2021)


Portland tide gauge, Sweet et al. (2017) Intermediate sea level rise scenario

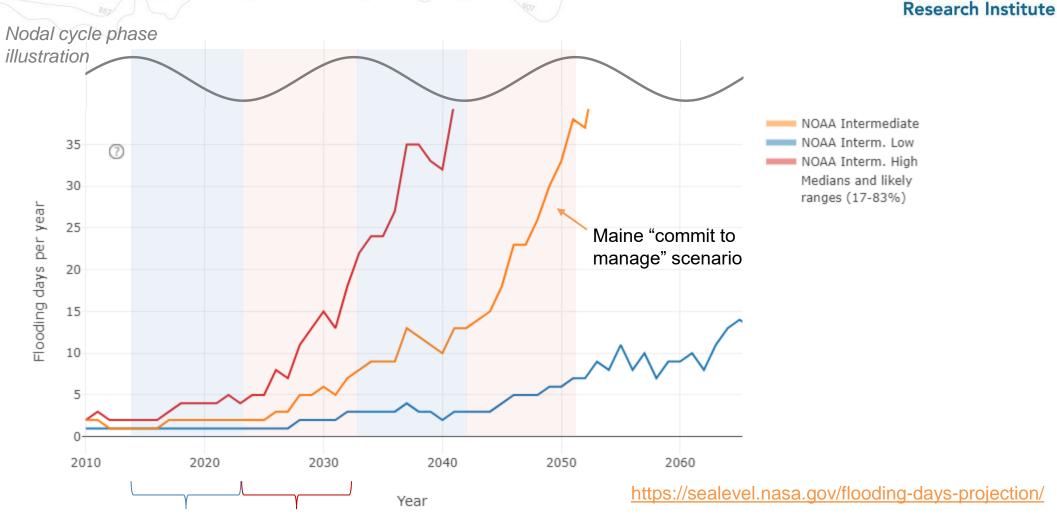
Not how the **average** number of flooding days over a decade underrepresents peak flood hazard within that decade. Methods that include future tide predictions and interannual sea level variability are needed to account for these severe flood years.

https://sealevel.nasa.gov/flooding-days-projection/

Tide range changes over an 18.6-year cycle, as the plane that the moon orbits the earth on "wobbles." In Portland, the nodal cycle varies the height of the year's highest high tides (the top 10%) by about 2 inches.

That doesn't seem like much, BUT it does impact high tide flooding throughout the Gulf of Maine

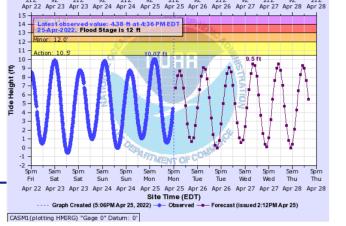
How the Moon 'Wobble' Affects Rising Tides


Scientists say it's less like a wobble and more like a slow, predictable cycle. And while the phenomenon will contribute to rising tides caused by climate change, it is just one of many factors.

The moon's orbital plane is at a slight incline relative to the Earth's, creating a socalled wobble effect. NASA tried to reassure the public: "<u>There's nothing new or</u> <u>dangerous about the wobble</u>." Dave Sanders for The New York Times

High tide flooding projections: Thompson et al. (2021)

Gulf of Maine


Through the early part of this decade, the nodal cycle is decreasing from a maximum to a minimum, and the increase in flooding days per year plateaus as **the decrease in tide range counteracts sea level rise.** In 2023, tide range will start increasing again, and we can expect an acceleration in the increase in high tide flooding days over the next decade.

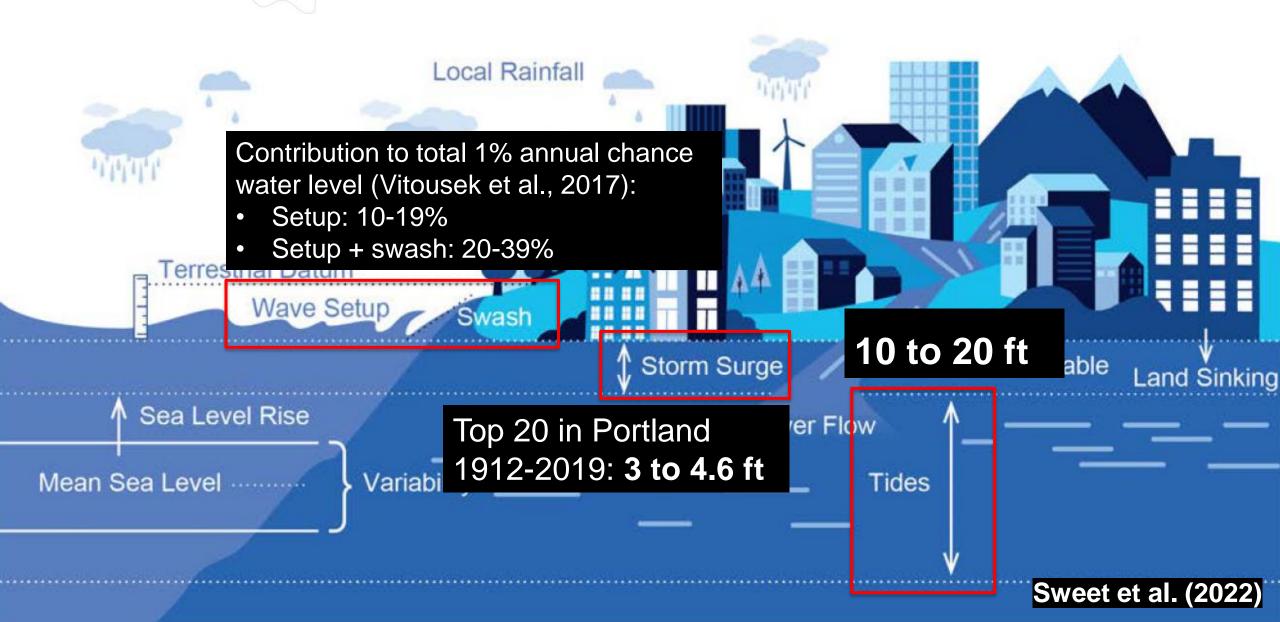
High tide flooding thresholds

1. Observational thresholds – established by emergency managers and NOAA weather forecast offices

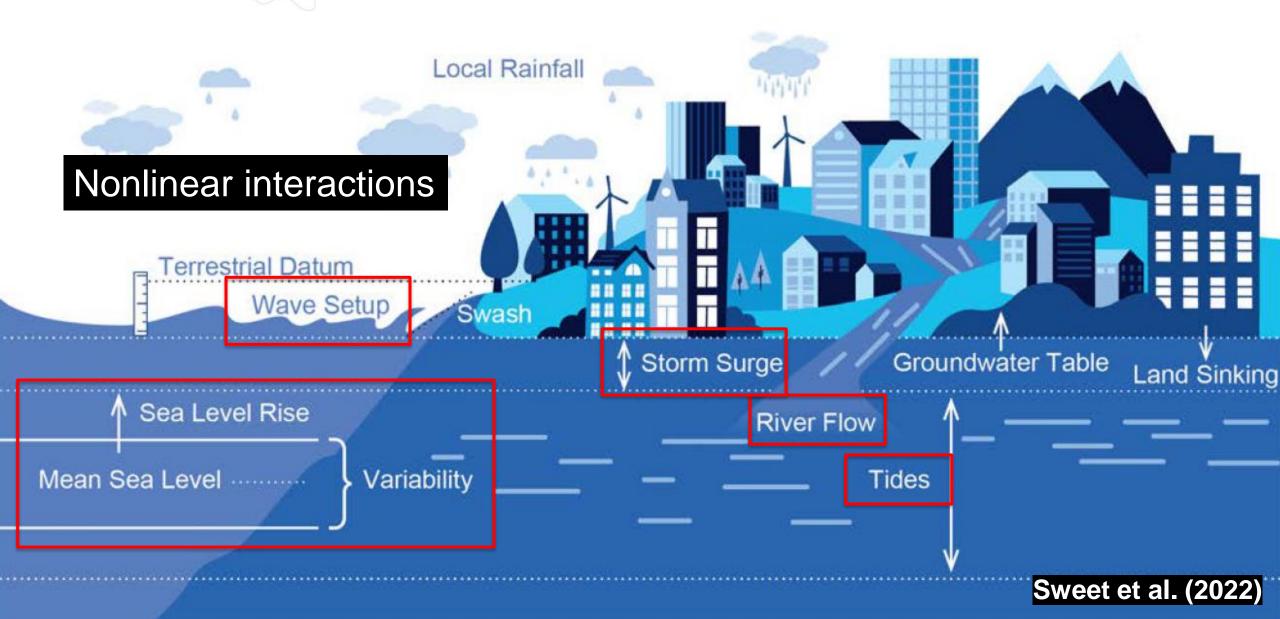
National Weather Service
Advanced Hydrologic Prediction Service

If you notice any errors in the below information, please contact our Webmaster

- 13.8 Water will enter and flood businesses along and near the Portland Pier. Water will be nearly two feet deep along Granite Point Road in Biddeford and Mile Stretch Road will be flooded. Roads and businesses will also flood in Wells and Kennebunkport.
- 13 Water will reach the tailpipes of cars at businesses near the Portland Pier. At this elevation, a foot of water will also cover Granite Point Road in Biddeford
- 12.5 Water will be eight to ten inches deep along several low lying side streets and wharfs along Portland Harbor with water up to the bottom of doors in parking lots east of the Portland Peir. Water will be eight to 10 inches deep covering Marginal Way in Portland with six to eight inches of water on Somserset Street.
- 12 Flooding four to six inches deep occurs along the wharfs and most vulnerable side streets near the Portland Pier. Coastal flooding begins on Marginal Way and Somerset Street, especially if combined with heavy rainfall.


High tide flooding thresholds

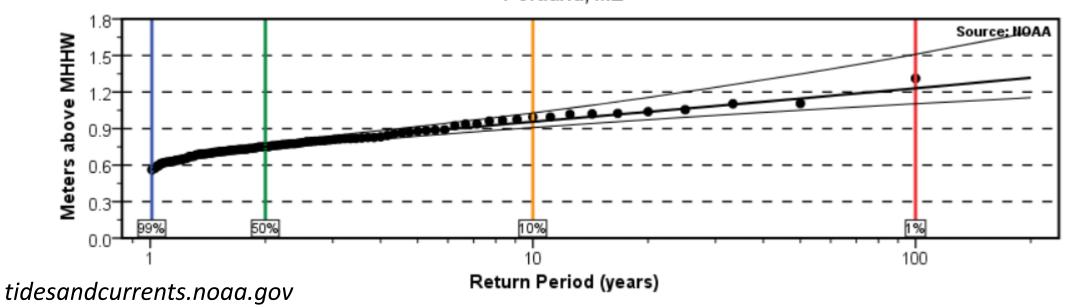
- Observational thresholds established by emergency managers and NOAA weather forecast offices
- 2. Sweet et al. (2018) Empirical thresholds = function of great diurnal tide range (GT), or MHHW MLLW
 - Minor = 1.04 * GT + 0.50 m
 - Moderate = 1.03 * GT + 0.80 m
 - Major = 1.04 * GT + 1.17 m


Physical drivers of flooding (extreme flooding)

Physical drivers of flooding (extreme flooding)

Two primary approaches:

- 1. Tide gauge-based statistics
- 2. Dynamic modeling

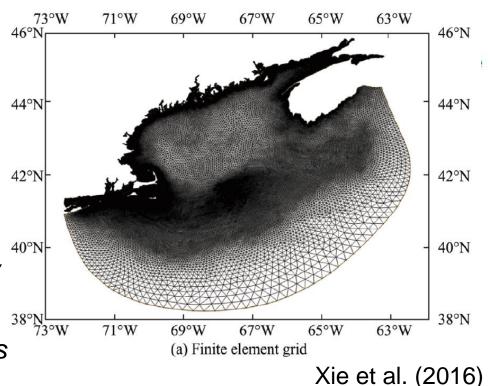

Two primary approaches:

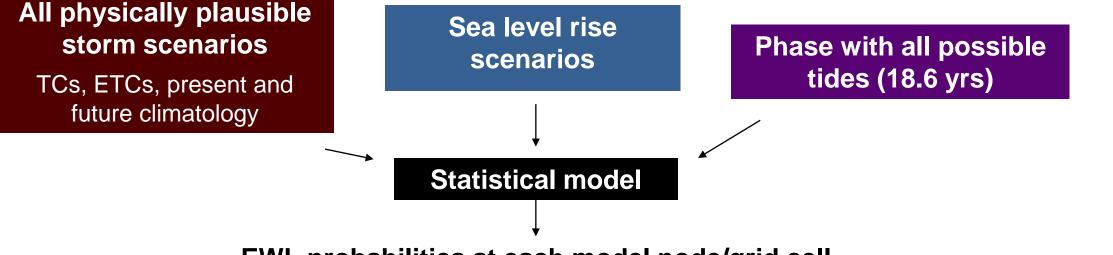
1. Tide gauge-based statistics

Most accurate for a point location, but does not provide lateral inundation information and usually sheltered from wave processes

Portland, ME

Two primary approaches:


- 1. Tide gauge-based statistics
 - a) NOAA CO-OPS GEVs (tidesandcurrents.noaa.gov): present-day statistics for stations with >30 years of data
 - **b) USACE Sea Level Change Calculator:** NOAA GEVs + various SLR scenarios
 - c) Sweet et al. (2022): 1-degree gridded extreme water levels (EWLs) for
 0.01 10 events/year with guidance on localizing and combining with sea level rise projections


Important considerations:

- No wave processes
- Taking vertical information and applying it laterally
- Does not consider nonlinear impacts of sea level rise, but these are sometimes small compared to uncertainty in SLR

Two primary approaches:

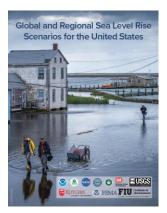
- 1. Tide gauge-based statistics
- 2. Dynamic modeling
- Specific storm/SLR scenarios (e.g. what would the January 2018 Nor'easter look like on top of 1.5 ft SLR?)
- Extreme water level probabilities for discrete SLR scenarios

EWL probabilities at each model node/grid cell

Two primary approaches:

- 1. Tide gauge-based statistics
- 2. Dynamic modeling
 - a) DOT statewide probabilistic models: available in MA (MC-FRM); under development in NH; RFP out for ME
 - Discrete sea level rise scenarios + tides + TC and ETC surge + wave setup; smallerscale experiments that include swash
 - Infrastructure-scale results
 - b) USACE NACCS probabilistic model: Atlantic coast, Virginia to Maine
 - Lower resolution that DOT model; often used to provide boundary conditions for higherresolution studies
 - Careful about statistics in Gulf of Maine bc of limited tidal alignments
 - c) Smaller-scale scenario modeling studies

Two primary approaches:


- 1. Tide gauge-based statistics
- 2. Dynamic modeling

FEMA FIRMs often combine tide gauge-based statistics with dynamic modeling, observed high water marks, and spatial interpolation techniques to estimate the area flooded by an event with an average frequency of 0.01 events/year (the 100-yr event) under "current conditions"

- Stillwater level (SWL): storm surge + tides
- Base flood elevation (BFE) / total water level (TWL): storm surge + tides + wave setup + swash

Take-home messages

Recommended reading:

Sweet et al. (2022)

And always be mindful of datums

Sea level rise

- Uncertainty: ice sheets and human decision-making
- Use or reference to probabilistic, localized NOAA or IPCC scenarios, considering timeline and risk tolerance

Coastal flooding

- Which physical drivers of flooding are included?
- Tide gauge-based statistics: more accurate; challenging to localize
- Dynamic modeling: rapidly developing

Thanks

hbaranes@gmri.org

Gulf of Maine Research Institute

Science. Education. Community.