

Best Management Practices and Innovative Treatment

Cody Obropta, PE Environmental Engineer Stormwater Engineering Team

MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Protecting Maine's Air, Land, and Water

Overview

- Stormwater Management Goals Recap
- Grey vs. Green Infrastructure
- Overview of Practices
- Innovative Measures

MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION

www.maine.gov/dep

IN STRIAL

Stormwater Management Assumptions

• We are going to build stuff.

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Stormwater Management Assumptions

• We are going to build stuff.

• Flooding is bad.

WMTW

Flooding still possible in Maine through Noon

Snowfall reports were between .4" in Portland to 2" in Lewiston to 4.5" in Weld. Rainfall was around 1-2" and a few areas saw minor flooding.

3 weeks ago

Fox Bangor

Winter rainfall causes flooding problems across Maine | Local

...

On Route 1A in Lincolnville, flooding has slowed traffic and damaged driveways along the road, where the Maine Department of Transportation...

A portion of Pushaw Road in Glenburn collasped last Saturday when heavy rain washed away one of culverts that carries a stream under the road. The Maine Department of Transportation is working to repair the damage, but it will likely take several days. Credit: Courtesy of Andy Ryder of the Glenburn Fire Department

1 week ago

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Goals of Stormwater Management

- Prevent Flooding & Erosion
 - Detain water on site
 - Slow release to reduce impact on waterbodies
 - Groundwater recharge (infiltration)
- Protect Water Quality
 - Remove TSS, nitrogen, & phosphorous
 - Remove Heavy metal, toxins, chlorides
 - Remove Plastic, litter, trash, refuse

Goals of Stormwater Management (cont.)

- Prevent Combined Sewer Overflow
 - Direct stormwater into separate storm sewer
 - Slow entry into combined sewer via detention / peak flow controls
 - Infiltrate where available

Definitions

- BMP Best Management Practice
- SCM Stormwater Control Measure
- GI / GSI Green (Stormwater) Infrastructure
 - practices that use or mimic natural systems to manage stormwater runoff
- Grey Infrastructure refers to structures such as dams, seawalls, roads, pipes or water treatment plants.

"GREEN" INFRASTRUCTURE

"GRAY" INFRASTRUCTURE

STORMWATER CONTROL MEASURES (SCMs)

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Green

- Co-benefits
 - Heat island effect
 - Biodiversity
 - Aesthetics
- Cost savings

- Space savings
- Scalability
- Efficiency
- Longevity
- Well understood

Both require maintenance for proper function. Both can accomplish stormwater management goals.

Best Management Practices Overview

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

You will see lots of engineering details ahead.

Prepare for cross-sections, arrows, and labels.

Vegetated Buffers

- Slow stormwater naturally
- Capture nutrients/pollutants
- Maintain existing hydrology
- Allow for infiltration
- Co-benefits (wildlife habitat, control heat island effect, etc).

Vegetated Buffers Examples

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Vegetated Buffers

- Sheet flow is required for proper treatment.
 - A level spreader is often used

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Bioretention & Vegetated Filters

Bioretention & Vegetated Filters

Includes:

- Bioretention cells
- Grassed-underdrained soil filters
- Rain gardens
- Bioswales
- Meadow basins

****Sometimes Infiltration Basins****

Bioretention Mechanics

- Physical filtering
- Nutrient uptake (plants & soil microorganisms)
- Chemical breakdown
- Slows water by allowing ponding
- Additional time to pass through media

Bioretention & Vegetated Filters

- Can include infiltration
- Can be lined and have an underdrain to prevent infiltration
- High removal rates
- Highly scalable
- Co-benefits

Infiltration Considerations

- Contamination / Brownfields
- Drainage area use
 - Pretreatment whenever possible
- SHWT seasonal high water table
 - Separation distance often required
 - Determined by test pits
- Native soil makeup
 - Karst (limestone)
 - Hydrologic soil group (HSG)
 - Test pits

Figure 1 - Groundwater mounding resulting from infiltration of stormwater

Bioretention & Vegetated Filters

Sorretention Sol **Choker Stone** Stone Base Underdrain

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Constructed Wetlands

- Incredible for water quality treatment
 - Nutrient uptake + settling
- Large volume capacity
- Massive ecological benefits
- Incredibly complex to design
 - Requires water balance
 - Maintenance to ensure diversity of species
 - Monitoring requirements
- Concerns over regulation
- Large space requirements

Figure 13.2. Mixed Wetland (Emergent and Forested) Basin

Constructed Wetlands

PROFILE

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

PLAN VIEW

Subsurface Gravel Wetlands

Subsurface Gravel Wetlands

- Subtype of constructed wetlands that is easier to design and construct
- Nutrient uptake in vegetation
- Settling of suspended particles
- Denitrification in subsurface gravel bed
- Good for retrofits
 - Low hydraulic head requirements

Subsurface Gravel Wetlands

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Green Roof

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Green Roof

- High aesthetic value
- Effective treatment-in-place
- Mimics site in natural state
- Effectively slows water
- Large maintenance requirement
- Costlier than traditional roof types
 - Additional weight / loading considerations
 - Multiple layers of material

Cisterns & Rain Barrels

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Cisterns & Rain Barrels

- Beneficial re-use
- Resiliency during drought
- Situationally limited
- Winterization challenges
- Does not address water quality treatment

Level Foundation- crushed gravel, poured concrete or concrete pavers over packed earth

Versions:

- Porous pavement
- Pervious concrete
- Permeable pavers
- Grass pavers
- Paver stones

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Electric Car #MaineWontWait

- Physical filtering
- Mimics natural hydrology
- Good for volume storage
 - Sometimes paired with subsurface storage systems
- Potential for groundwater recharge (infiltration)
- Co-benefits
 - Faster snow melt
 - No black ice
 - Cooler in summer

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Figure 7.7.2 – Pervious Pavement Cross-Section

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Wet Pond

- Treatment via settling and biological processes
- Useful for volume control
- Potential for water re-use
- Co-Benefits
 - Wildlife
 - Aesthetics

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

•

Wet Pond

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Detention Basin

Detention Basin

- Primarily for flood control
- Falling out of favor
- Typically mowed
- Large potential for retrofitting

Surface Extended Detention Basin - Plan View

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Detention Basin Retrofits

Subsurface Detention / Filters

Subsurface Detention / Filters

- Great for large quantity storage
- Often paired with porous pavement
- Less ecological value
- Expensive
- Corrective maintenance can be a challenge

* PVC or HDPE Liner cab be incorporated as required by engineer of record

Subsurface Detention / Filters

STORMWATER RESERVOIR NC A 4" MIN. RESERVOIR LAYER FOUND (MEDOT 103.22 TYPE C 111 UNDERDRAIN MATERIAL 0 OR 3/4" DIA. ŝ CRUSHED STONE) Õ MIN. FILTER LAYER (SANDY SOLL WITH 4-7% FINES - BACKFILL MAY BE APPROPRIATE) 4" MIN DIA. NDERDRAIN LAYER PERFORATED (MEDOT 10322 TYPE C UNDERDRAIN MATERIAL OR PIPE 3/4" DIA. CRUSHED STONE)

Dry Well

Figure 7.5.1 - Roof Dripline Cross-Section

Innovative Stormwater Management

Innovative Stormwater Management: Minimize Space, Maximize Treatment

- Redevelopment of urban spaces
- Manufactured treatment devices
- Engineered media
- Pre-constructed modules
- Beneficial re-use
- Hybrid GI systems

Innovative Measures: Filters

- Replaceable cartridges
- Engineered media
- Try to maximize pollutant removal in a smaller footprint or below ground

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Innovative Measures: Separators

- Excellent for pre-treatment
- Effective sediment
 removal
- Straightforward cleaning / maintenance

Innovative Measures: Modular Green Infrastructure

- Good for urban environments
- Self contained
- Scalable
- Provide benefits of green infrastructure
- May require bypass for large storms
- Little volume retention

NE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Adding Technology to Stormwater Infrastructure

- Corresponds with smart cities initiatives
- Real-time monitoring
- Effective data collection informing future treatment recommendations
- Potential for flood reduction
- Complications can add additional failure points

Rainwater Re-Use

- Capture, store, and re-use
- Drought resilience
- Advanced recycling

RAINWATER HARVESTING

Floating Treatment Wetlands

- Additional nutrient uptake
- Increase contact time in wet ponds
- Green Infrastructure Co-Benefits
- Can be built inexpensively

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Chloride Treatment Units

- No BMPs effectively remove chlorides
- Topic of active study
- Dilution?
- Electrodialysis?
- Evaporation?

Journal of Environmental Management Volume 308, 15 April 2022, 114553

Chloride removal capacity and salinity tolerance in wetland plants

Maria Schück 🝳 🖂 , Maria Greger

Show more V

+ Add to Mendeley 😪 Share 🗾 Cite

https://doi.org/10.1016/j.jenvman.2022.114553 7

Under a Creative Commons license a

underdrain

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Wrapping Up

- There are a variety of measures available for the treatment and control of stormwater
- Green vs. Grey infrastructure
- The field is evolving to fit needs

MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION

www.maine.gov/dep

ISTRIA.

Prof Hahort

Moving Forward

Stormwater Maintenance 101

The Future of Stormwater Management in Maine

MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION

Contact: Cody Obropta, PE Stormwater Engineering Team 207-356-1481 cody.obropta@maine.gov

www.maine.gov/dep

INE DEPARTMENT OF ENVIRONMENTAL PROTECTION